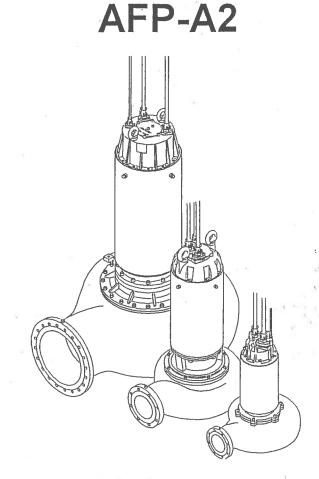



| CH2M<br>∎HILL | DES. MLHP<br>DR. 4-K<br>CHK. TROG<br>APPD, LJBT | <br><u>и/ві</u><br>DATE | HEIDOND BITTHILLE | <br>APPD | WASTEWATER TREATMENT PLANT<br>CITY OF NAMPA, IDAHO<br>CONTRACT 4 |
|---------------|-------------------------------------------------|-------------------------|-------------------|----------|------------------------------------------------------------------|

 $\triangle$ 


| 0"            |                                                                            |                      |   |
|---------------|----------------------------------------------------------------------------|----------------------|---|
|               | EL. 2456.89                                                                |                      |   |
|               |                                                                            |                      |   |
|               | #7@12                                                                      |                      |   |
|               | ₩                                                                          |                      |   |
|               |                                                                            |                      |   |
|               |                                                                            |                      |   |
|               |                                                                            |                      |   |
|               | EL 2447.77                                                                 |                      |   |
|               |                                                                            |                      |   |
|               | 3<br>47 € 12                                                               |                      |   |
| APZ           | <sup>2</sup> 0 <sup>-</sup> <sup>4</sup> 7 <sup>3</sup> √ <sup>4</sup> €12 |                      |   |
| 9 <i>12</i> - | FOR 6 SPC 9                                                                |                      |   |
| e. /2         |                                                                            |                      | l |
| FOR           |                                                                            |                      |   |
| ୧୯ଜ           | EL. 2438.81                                                                |                      |   |
|               |                                                                            |                      | l |
| -             | BEND BARS @ BLOCKOUTS (TYP)                                                |                      |   |
| -             | ADD#5@12 @ BLOCKOLTS (TYP)                                                 |                      | l |
| SH I<br>E BI  | BOTTOM THICKNESS BELOW<br>OCKOUT BLOCKOUT INVERT                           |                      |   |
|               |                                                                            |                      | l |
|               |                                                                            |                      | I |
|               |                                                                            |                      | I |
|               |                                                                            |                      | I |
|               |                                                                            |                      | I |
|               |                                                                            |                      | I |
|               |                                                                            |                      | I |
|               |                                                                            |                      |   |
|               |                                                                            |                      |   |
|               | FILTER EFFLUENT PUMP STATION                                               | SHEET 87             | 1 |
|               | STRUCTURAL - SECTION                                                       | OF<br>DATE MAR. 1979 |   |
|               |                                                                            | DWG. C9821.2B        | I |





**EXISTING PUMP DATA** 





 AFP 1000
 AFP 1525
 AFP 2001
 AFP 2501
 AFP 3001
 AFP 4001
 AFP 5001
 AFP 6001
 AFP 8001

 AFP 1001
 AFP 1526
 AFP 2002
 AFP 2523
 AFP 3002
 AFP 4003
 AFP 5002
 AFP 6002
 AFP 8002

 AFP 1552
 AFP 2024
 AFP 2024
 AFP 3003
 AFP 4004
 AFP 6004
 AFP 8002

 AFP 1555
 AFP 2025
 AFP 2051
 AFP 2051
 AFP 3003
 AFP 4004
 AFP 6004
 AFP 8002

# Einbau - und Betriebsanweisung Installation and Operating Instructions

Änderungen im Sinne der technischen Weiterentwicklung vorbehalten ! We reserve the right to make modifications in the progress of technical development ! Rev:

Dwg. DS-A02-018

Date: 01/00

### SCOPE

install ABS Model and Furnish 3002M3.50/8FM submersible non-clog AFP wastewater pump(s). The pump(s) shall be supplied with a mating cast iron 12 inch discharge connection and be capable of delivering 4200 U.S. GPM at a total dynamic head of 28 feet. An additional point on the same curve shall be U.S. GPM at a total dynamic head of \_\_\_\_\_ feet. Shut off head shall be \_\_\_\_\_\_ feet (minimum). The motor shall be an integral part of the unit. The motor shall be  $\frac{47}{7}$  HP connected for operation on a  $\frac{460}{7}$  volts, \_\_\_\_\_\_ phase, 60 hertz electrical supply service. The pump shall be supplied with a cast iron guide rail base fitted with a 12 inch discharge elbow. Each unit shall be fitted with \_\_\_\_\_ feet of lifting chain or stainless steel cable. The working load of the lifting system shall be a minimum of 50% greater than the pump weight. Each pump motor shall be equipped with \_\_\_\_\_\_feet of power and control cable(s) sized in accordance with NEC standards.

#### PUMP DESIGN

The pump(s) shall be capable of handling raw unscreened sewage, stormwater, and other similar solids-laden fluids without clogging. The discharge base and elbow shall be permanently installed in the wet well and connected to the discharge piping. In order to prevent binding or separation of the pump from the guide rail system, the pump(s) shall connect to the guide rail base automatically and firmly, guided by no more than one guide bar extending from the top of the station to the discharge connection. Dual guide rail systems and/or cable guide systems shall not be considered acceptable. The sliding guide bracket shall be a separate part of the pumping unit, capable of being attached to standard ANSI or DIN pump flanges so that the base is interchangeable with other pumps and not limited to a specific pump. Non standard flange dimensions shall not be considered acceptable. There shall be no need for personnel to enter the wet well to remove or reinstall the pump(s). Positive sealing of the pump to the discharge elbow shall be accomplished by a field replaceable Nitrile rubber profile gasket mechanically held in place between the pump and the sliding guide bracket: Metal to metal contact between the pump and discharge elbow shall not be considered acceptable. No portion of the pump shall bear directly on the floor of the sump. The pump with its appurtenances and cable shall be capable of continuous submergence to a depth of 65 feet.

#### PUMP CONSTRUCTION

Major pump components shall be of gray cast iron, ASTM A-48, Class 40, with smooth surfaces devoid of porosity or other irregularities. All exposed nuts and bolts shall be AISI type 316 stainless steel construction. All metal surfaces coming into contact with the pumped media (other than the stainless steel components) shall be protected by a factory applied spray coating of modified vinyl-zinc primer with a modified acrylic resin finish on the exterior of the pump.

Sealing design for the pump/motor assembly shall incorporate metal to metal contact between machined surfaces. Critical mating surfaces where a watertight seal is required shall be machined and fitted with Nitrile or Viton rubber O-rings. Sealing will be the result of controlled compression of rubber O-rings in two planes

Specifications subject to change without notice

Page 1 of 2

and O-ring contact of four sides without requiring a specific torque limit. Rectangular cross sectioned gaskets requiring specific torque limits to achieve compression shall not be considered adequate or equal. No secondary sealing compounds shall be used.

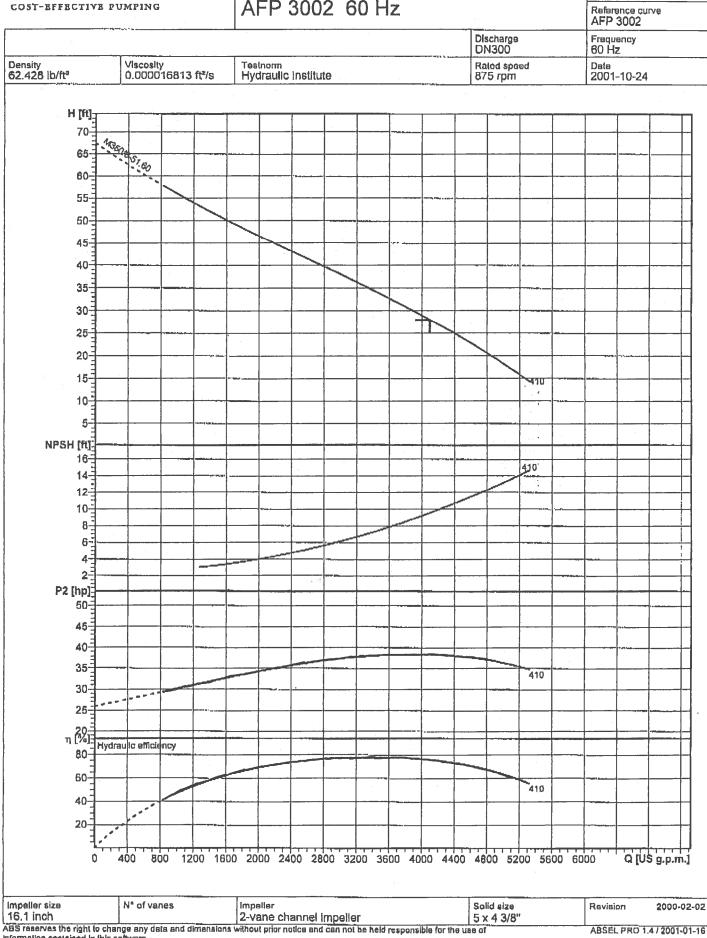
**Impeller:** The impeller shall be of gray cast iron, ASTM A-48, Class 40 and shall be of the closed, non-clogging dynamically balanced two vane design, capable of passing a minimum of 5X43/gdiameter spherical solids. The impeller shall be capable of being trimmed to meet specific hydraulic requirements, and shall have a slip fit onto the motor shaft and drive key. It shall be fastened to the shaft by a stainless steel bolt which is mechanically prevented from loosening by a positively engaged ratcheting washer assembly.

Wear Ring System: A replaceable wear ring of ASTM A48, Class 40, cast iron shall be securely fitted into the pump casing. As an option, casing and impeller wear rings constructed of stainless steel shall be available.

**Pump Volute:** The pump volute shall be single piece gray cast iron, ASTM A48, Class 40, non-concentric design with centerline discharge. Passages shall be smooth and large enough to pass any solids which may enter the impeller. Minimum inlet and discharge size shall be as specified. The discharge flange design shall permit attachment to standard ANSI or DIN flanges/appurtenances.

Rotating Assembly: The rotating assembly (impeller, shaft and rotor) shall be dynamically balanced such that undue vibration or other unsatisfactory characteristics will not result when the pump is in operation.

Shaft: The pump shaft and motor shaft shall be an integral unit. Each shaft shall be of 420 stainless steel material and adequately designed to meet the maximum torque required at any normal startup condition or operating point in the system. Maximum deflection shall not exceed .002" at the lower seal. Each pump shaft shall have a polished finish and have accurately machined shoulders to accommodate bearings, seals and impeller. Carbon steel or chrome plated shafts shall not be considered adequate or equal.


Mechanical Seals: Each pump shall be equipped with a tandem mechanical shaft seal system consisting of two totally independent seal assemblies. The seals shall operate in a lubricant reservoir that hydro-dynamically lubricates the lapped seal faces at a constant rate. The lower, primary seal unit, located between the pump and the lubricant chamber, shall contain one stationary industrial duty silicon-carbide seal ring and one rotating industrial duty siliconcarbide seal ring. The upper, secondary seal unit, located between the lubricant chamber and motor housing, shall contain one stationary carbon seal ring and one rotating seal ring made from corrosion resistant Cr-steel. Each seal interface shall be held in contact by its own spring system. The seals shall not require routine maintenance, or adjustment, and shall not be dependent on the direction of rotation for proper sealing. Each pump shall be provided with a lubricant chamber for the shaft sealing system which shall provide superior heat transfer and maximum seal cooling. The lubricant chamber shall be designed to prevent overfilling, and to provide lubricant expansion capacity. The drain and inspection plug shall have a positive anti-leak seal, and shall be easily accessible from the outside of the pump. The seal system shall not rely upon the pumped media for lubrication and shall not be damaged when the pump is run dry.





## Pump performance curves AFP 3002 60 Hz

Curve number



information contained in this software.

ABSEL PRO 1.4/2001-01-16

|      | TECHNICAL DA | ATA   |       | 8 Pole  |     |     |            | AFP 300 | 2 |
|------|--------------|-------|-------|---------|-----|-----|------------|---------|---|
| Dwģ. | Rev:         | Date: | 01/02 | Section | AFP | Tab | 12" Closed | Page    |   |

EXPLOSION PROOF

MOTOR SPECIFICATIONS

| Motor Design                  |         | NEMA design B, squirrel cage induction, air filled                            |  |  |
|-------------------------------|---------|-------------------------------------------------------------------------------|--|--|
| Motor Type                    |         | Enclosed submersible                                                          |  |  |
| Insulation Class              |         | Class F, rated at 155°C                                                       |  |  |
| <b>Bimetallic Temp Settin</b> | g       | 140°C±5°C                                                                     |  |  |
|                               | Thermal | Bimetallic Switches in each Phase, and at upper and lower bearings            |  |  |
| Motor Protection              | Leakage | DI Moisture Detection in seal oil chamber, motor housing and junction chamber |  |  |
| Maximum Submergend            | e       | 65 feet                                                                       |  |  |
| Max. Fluid Temperatur         | 9       | 40°C (104°F)                                                                  |  |  |
| Voltage Tolerance ±           |         | 10%                                                                           |  |  |
| RPM                           |         | 880                                                                           |  |  |

#### **PUMP & MOTOR DATA**

| Discharge Size                                  | 12"       |  |  |
|-------------------------------------------------|-----------|--|--|
| Impeller                                        | 420       |  |  |
| Solid Size-Inches                               | 4.3 X 5.0 |  |  |
| Impeller DIA mm                                 | 420       |  |  |
| WK <sup>2</sup> LB-FT <sup>2</sup> (with water) | 24.5      |  |  |
| Impeller weight LBS.                            | 94.0      |  |  |
| Minimum Flow GPM                                | 1250      |  |  |
| Motor                                           | M350/8-51 |  |  |
| внр                                             | 47        |  |  |
| Phase                                           | 3         |  |  |

#### MATERIALS of CONSTRUCTION

| Motor Housing        |           | Cast Iron ASTM A48 Class 40                          | ė                                  |  |  |  |  |
|----------------------|-----------|------------------------------------------------------|------------------------------------|--|--|--|--|
| Oil Chamber          |           | Cast Iron ASTM A48 Class 40                          |                                    |  |  |  |  |
| Seal Plate           |           | Cast Iron ASTM A48 Class 40                          |                                    |  |  |  |  |
| impelier             |           | Cast Iron ASTM A48 Class 40                          |                                    |  |  |  |  |
| Volute               |           | Cast Iron ASTM A48 Class 40                          |                                    |  |  |  |  |
| Water Jacket         |           | Steel ASTM A36                                       |                                    |  |  |  |  |
| Wear Ring Case       |           | Cast Iron ASTM A48 Class 40                          | Optional material: 316 SS          |  |  |  |  |
| Wear-Ring Impeller ( | optional) | 304-55                                               |                                    |  |  |  |  |
|                      |           |                                                      |                                    |  |  |  |  |
| Pump and Motor Sha   | ift       | 420 SS                                               |                                    |  |  |  |  |
| External Hardware    |           | 316 SS                                               |                                    |  |  |  |  |
| O-Rings              |           | BUNA "N" (NITRILE)                                   |                                    |  |  |  |  |
| Cable Glands         |           | BUNA "N" (NITRILE)                                   |                                    |  |  |  |  |
| Upper Bearing        |           | Cylindrical Roller Bearing Permane                   |                                    |  |  |  |  |
| Lower Bearing        |           | Angular Contact Ball Bearings Permanently Lubricated |                                    |  |  |  |  |
| Tandem               | Lower     | Silicon Carbide on Silicon Carbide                   | Silicon Carbide on Silicon Carbide |  |  |  |  |
| Mechanical Seal      | Upper     | Chrome Steel on Carbon                               | Chrome Steel on Carbon             |  |  |  |  |

#### WEIGHT OF PUMP AND MOTOR (LBS)

| Standard and Explosion proof | 2468 |  |  |  |
|------------------------------|------|--|--|--|
|                              |      |  |  |  |

#### CABLE SPECIFICATIONS

|                        | Туре      | H07RN-F, Ozoflex, GGC |            |   |  |  |  |  |
|------------------------|-----------|-----------------------|------------|---|--|--|--|--|
| Power Cable            | Number    | 2                     |            |   |  |  |  |  |
|                        | OD Inches | 1.12                  |            |   |  |  |  |  |
|                        | Туре      | H07RN-F, O2           | oflex, SOW |   |  |  |  |  |
| Control Cable          | Number    | 1                     |            |   |  |  |  |  |
|                        | OD inches | 0.71                  |            |   |  |  |  |  |
| Cable, Standard Length | 30 feet   |                       |            | · |  |  |  |  |



Galet

# TECHNICAL DATA

8 Pole

Tab

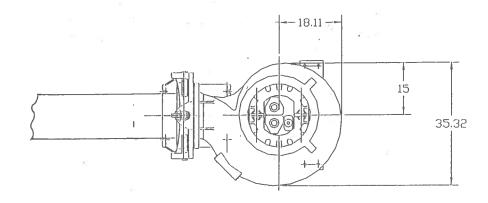
AFP

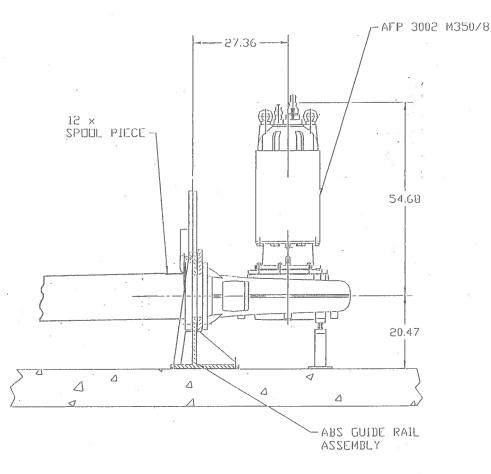
2.5

Motors M4-M9

Date: 01/00 DS-A02-012 Rev: Dwg. STANDARD & EXPLOSION PROOF

In the second


Section


| •                                               |
|-------------------------------------------------|
| Specifications subject to change without notice |

| Motor<br>Model | BHP<br>Out | KW<br>In | RPM      | Rated<br>Voltage  | Full<br>Load         | Locked<br>Rotor   | NEMA<br>Code | S.F. |      | ver Fac<br>% Loa |     |      | or Efficie<br>% Loa |      |
|----------------|------------|----------|----------|-------------------|----------------------|-------------------|--------------|------|------|------------------|-----|------|---------------------|------|
|                | (P2)       | (P1)     |          |                   | Amps                 | Amps              |              |      | 100% | 75%              | 50% | 100% | 75%                 | 50%  |
| M4 Fram        | e, Thre    | e Pha    | se, 8 Po | ole               |                      |                   |              |      |      |                  |     |      |                     |      |
| M170/8         | 23.0       | 20.5     | 880      | 230<br>460<br>575 | 66.0<br>33.0<br>26.4 | 292<br>146<br>117 | F            | 1.1  | .78  | .74              | .64 | 82.8 | 81.8                | 78.1 |
| M210/8         | 28.0       | 25.3     | 880      | 230<br>460<br>575 | 82.4<br>41.2<br>33.0 | 356<br>178<br>142 | F            | 1.1  | .77  | .73              | .63 | 83.0 | 82.2                | 79.0 |
| M250/8         | 33.5       | 29.9     | 880      | 230<br>460<br>575 | 102<br>50.8<br>40.6  | 474<br>237<br>190 | G            | 1.1  | .74  | .68              | .58 | 83.5 | 82.3                | 79.1 |
| M5 Fram        | ie, Thre   | e Pha    | se, 8 Po | ole               |                      |                   |              |      |      |                  |     |      |                     |      |
| M350/8         | 47.0       | 40.3     | 880      | 460<br>575        | 65.6<br>52.5         | 314<br>251        | F            | 1.1  | .77  | .73              | .63 | 86.9 | 86.0                | 83.1 |
| M430/8         | 58.0       | 49.0     | 880      | 460<br>575        | 77.8<br>62.2         | 370<br>296        | F            | 1.1  | .79  | .74              | .65 | 87.8 | 87.0                | 84.1 |
| M520/8         | 70.0       | 59.2     | 880      | 460<br>575        | 94.0<br>75.2         | 416<br>333        | E.           | 1.1  | .79  | .75              | .67 | 87.8 | 87.4                | 84.8 |
| M630/8         | 84.0       | 71.2     | 880      | 460<br>575        | 114<br>91.2          | 568<br>454        | F            | 1.1  | .78  | .73              | .63 | 88.6 | 87.8                | 85.0 |
| M860/8         | 115        | 97.3     | 880      | 460<br>575        | 159<br>127           | 739<br>591        | F            | 1.1  | .77  | .72              | .62 | 88.4 | 88.1                | 86.0 |
| M6 Fram        | ie, Thro   | ee Pha   | se, 8 P  | ole               |                      |                   |              |      |      |                  |     |      |                     |      |
| M1040/8        | 140        | 116      | 880      | 460<br>575        | 197<br>158           | 690<br>552        | С            | 1.1  | .74  | .69              | .59 | 89.9 | 89.7                | 88.0 |
| M1250/8        | 168        | 139      | 880      | 460<br>575        | 242<br>194           | 898<br>718        | D            | 1.1  | .72  | .66              | .55 | 90.2 | 89.7                | 88.1 |
| M1500/8        | 201        | 166      | 880      | 460<br>575        | 289<br>231           | 1032<br>826       | D            | 1.1  | .72  | .67              | .56 | 90.2 | 89.7                | 88.3 |
| M7 Fram        | ne, Thr    | ee Pha   | se, 8 P  | ole               |                      |                   |              |      |      |                  |     |      |                     |      |
| M1850/8        | 248        | 204      | 880      | 460<br>575        | 341<br>273           | 1531<br>1225      | E            | 1.1  | .75  | .69              | .58 | 90.7 | 90.3                | 88.7 |









#### ABS Pumps Inc.

CORPORATE OFFICE: ABS PUMPS, INC. 140 POND VIEW DRIVE MERIDEN, CT 06450 (203) 238-2700 FAX (203) 238-0738

REGIONAL OFFICES: ABS PUMPS, INC. 949 SHADICK DRIVE ORANGE CITY, FL 32763 (904) 775-6353 FAX (904) 775-3272

ABS PUMPS, INC. 970 GARCIA AVE., UNITS A & B PITTSBURG, CA 94565 (510) 427-6400 FAX (510) 427-6404

1,

ABS PUMPS, INC. 6315 SHAWSON DRIVE, UNIT # 13 MISSISSAUGA, ONTARIO CANADA L511J2 (905) 670-4677 ٠.

## Nampa Wastewater Treatment Plant Phase I Upgrades: Group A-Liquid Stream Upgrades

Response to Written Bidder Questions – Addendum 5

| Internal        | Spec/Drawing           | Bidder Question/Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Response                                                                                                                            |
|-----------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| <u>Tracking</u> |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                     |
| 24              | <u>00 52 00</u>        | Please see caption below taken from<br>Addendum No. 2 - Plant Operation Flow<br>(Page 5). This indicates that the<br>Completion date of Milestone No. 1 is to be<br>April 2016. Specification Section 00 52 00<br>4.2.2.1 indicates that the completion date<br>of Milestone 1 is to be within 600 Days<br>after Notice to Proceed. Based on an award<br>and estimated Notice to Proceed date of<br>May 15, 2015, the completion date per the<br>Agreement will be on or about January 4th,<br>2017. Please confirm the required<br>completion date of Milestone No. 1. | Refer to Section 00 52 00 Paragraph 4.2 for Contract Times.                                                                         |
| 27              | 381-E-111              | Ref. Drawing 100, 3129HMCP, what is this, what does it feed, what feeds it, etc. Also not shown on the 1-Line.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3129HMCP is the HVAC master control<br>panel. See cable block diagram labeled<br>"Air Handling System" of drawing 10-<br>PEB-E-510. |
| 28              | 40 91 00<br>2.04.D F51 | Paragraph D. F51 Flow Element &<br>Transmitter, Thermal Mass Flow<br>Can the max operating temperature<br>requirement be lowered to 250F?                                                                                                                                                                                                                                                                                                                                                                                                                               | See Addendum 5.                                                                                                                     |
| 29              | 40 91 00<br>2.04.D F51 | Paragraph D. F51 Flow Element &<br>Transmitter, Thermal Mass Flow<br>Paragraph 3.b.2) Process Connection.<br>States a 1-1/4" retractable sensor with<br>graphite packed gland is required.<br>Paragraph 6.g. states a 1" FNPT meter<br>connection. My question is if the 1-1/4"<br>retractable sensor is not necessary since<br>this meter will be in a flow conditioner<br>inline pipe spool?                                                                                                                                                                          | A 1 1/4" MNPT is not required because<br>the all meters are required to be<br>inserted into a flow conditioner. See<br>addendum.    |

| Internal<br>Tracking | Spec/Drawing | Bidder Question/Comment                                                                                                                                                                                                                                                                                                                             | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30                   | 050-CY-108   | I understand that the existing 42" PE pipe<br>that we are tying into is concrete. Where is<br>this shown in the plans? Where are other<br>existing pipe materials shown?                                                                                                                                                                            | The information regarding the 42-inch<br>PE is shown on sheet 125 of the 1979<br>Nampa WWTP Contract 4 drawings and<br>in the specifications for those<br>documents. This drawing has been<br>added to Volume 6 Record Drawings<br>by Addendum 5. This drawing also<br>shows the Primary Effluent Splitter Box<br>that is to be demolished under the<br>current contract. Other existing pipe<br>materials may or may not be identified<br>on the Record Drawings for the project<br>under which they were installed. For<br>some projects the material is identified<br>in the specifications rather than on the<br>drawings, and the specifications are<br>generally not available for many older<br>projects, some of which date back to<br>the 1960s. A compilation of project<br>record Drawings is available for<br>bidders to view in accordance with<br>4.2.1.2 of the Instructions to Bidders. |
| 31                   | 050-CY-301   | In Secondary Clarifier Meter Vault (Sheet<br>48 of 157) there are 2 – 30" valves called<br>out (FV 3110 and FV 3111) that I can't find<br>any information on.                                                                                                                                                                                       | See Addendum 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 32                   | 40 27 00.10  | In the Buried Pressure Pipe – AWWA C900,<br>you call for pressure class 150. Pressure<br>Class 150 doesn't exist anymore since the<br>reclassification of AWWA C900 in 2007.<br>Could you specify either a DR rating or a<br>psi that you would like?                                                                                               | See Addendum 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 33                   | 40 27 00.10  | In the Buried Gravity Pipe – you call for<br>ASTM D3034SDR less than 35. Could you<br>specify what you mean by less than 35 or<br>specify a pipe class that you would like to<br>use?                                                                                                                                                               | See Addendum 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 34                   | 40 91 00     | F4 Flow Element and Transmitter,<br>Electromagnetic. Paragraph 8.h.<br>Submergence: Temporary submergence is<br>stated as required. Can this be changed for<br>integral transmitter units to be IP66 (NEMA<br>4) rating? As an example, the Rosemount<br>Model 8732 is listed as an approved<br>transmitter but only meets IP66 (NEMA 4)<br>rating. | The intention of the design was to<br>have the mag meters with integral<br>transmitter be rated NEMA 4, and the<br>flow meters with remote transmitters<br>to be rated for temporary<br>submergence. See Addendum 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| <u>Internal</u><br>Tracking | Spec/Drawing | Bidder Question/Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Response                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35                          | 01 57 28     | Section 1.05 QUALITY ASSURANCE states<br>that the temporary flow control systems<br>designer to be a professional engineer with<br>at least 5 years' experience and registered<br>in the State of Idaho.<br>Q1: Is the PE absolutely necessary? Xylem<br>Dewatering Solutions (Godwin Pumps) has<br>performed many bypasses of similar nature<br>and many of which have been larger in<br>scale when compared to the bypasses<br>required for this job and have not required<br>a PE review. Rather, references for<br>bypasses in similar size and scope have<br>been requested.<br>Q2: If you do indeed required a PE, is it<br>necessary for him/her to be registered in<br>the State of Idaho? If it is, you may be<br>limiting the number of bypass vendors able<br>to bid this work. | The design must be stamped by an Idaho PE.                                                                                                                                                                                                                                                                                                       |
| 36                          | 01 57 28     | Are there any as-built drawings of just the<br>Trickling Filter Effluent Pump Station that<br>you could supply us with?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Refer to the last 3 sheets in Volume 6<br>Supplementary Information, which are<br>the design drawings for the 2 existing<br>submersible pumps. Refer to drawing<br>050-D-501 added under Addendum 5,<br>which shows the original screw pump<br>station mechanical design. Also see<br>Addendum 5 for other record drawings<br>added to Volume 6. |
| 37                          | 01 57 28     | Can you supply us with the pump<br>performance data and pump curves for the<br>existing submersible pumps currently<br>installed in the TFEPS wet well?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | See Addendum 5 for these curves.                                                                                                                                                                                                                                                                                                                 |